Selasa, 04 Desember 2012

Gelombang Elektromagnetik


I. PENDAHULUAN
Kemajuan teknologi saat ini semakin meningkat berikut dalam penggunaan gelombang elekromagnetik dalam kehidupan sehari-hari.Seperti apakah gelombang elektromagnetik, apa contoh gelombang elektromagnetik itu?Gelombang elektromagnetik sebenarnya selalu ada disekitar kita, salah satu contohnya adalah sinar matahari, gelombang ini tidak memerlukan medium perantara dalam perambatannya. Contoh lain adalah gelombang radio. Tetapi spektrum gelombang elektromagnetik masih terdiri dari berbagai jenis gelombang lainnya, yang dibedakan berdasarkan frekuensi atau panjang gelombangnya. Untuk itu disini kita akan mempelajari tentang rentang spektrum gelombang elektromagnetik, karakteristik khusus masing-masing gelombang elektromagnetik di dalam spectrum dan contoh dan penerapan masing-masing gelombang elektromagnetik dalam kehidupan sehari-hari.

II. KAJIAN PUSTAKA
GELOMBANG ELEKTROMAGNETIK
Gelombang Elektromagnetik adalah gelombang yang dapat merambat walau tidak ada medium. Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi elektromagnetik.Ciri-ciri gelombang elektromagnetik :Dari uraian tersebut diatas dapat disimpulkan beberapa ciri gelombang elektromagnetik adalah sebagai berikut:1. Perubahan medan listrik dan medan magnetik terjadi pada saat yang bersamaan, sehingga kedua medan memiliki harga maksimum dan minimum pada saat yang sama dan pada tempat yang sama.2. Arah medan listrik dan medan magnetik saling tegak lurus dan keduanya tegak lurus terhadap arah rambat gelombang.3. Dari ciri no 2 diperoleh bahwa gelombang elektromagnetik merupakan gelombang transversal.4. Seperti halnya gelombang pada umumnya, gelombang elektromagnetik mengalami peristiwa pemantulan, pembiasan, interferensi, dan difraksi. Juga mengalami peristiwa polarisasi karena termasuk gelombang transversal.5. Cepat rambat gelombang elektromagnetik hanya bergantung pada sifat-sifat listrik dan magnetik medium yang ditempuhnya.Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat James Clerk Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.

SUMBER GELOMBANG ELEKTROMAGNETIK
  1. Osilasi listrik.
  2. Sinar matahari  menghasilkan sinar infra merah.
  3. Lampu merkuri  menghasilkan ultra violet.
  4. Penembakan elektron dalam tabung hampa pada keping logam  menghasilkan sinar X(digunakan untuk rontgen).
Inti atom yang tidak stabil menghasilkan sinar gamma.
SPEKTRUM GELOMBANG ELEKTROMAGNETIKSusunan semua bentuk gelombang elektromagnetik berdasarkan panjang gelombang dan frekuensinya disebut spektrum elektromagnetik. Gambar spectrum elektromagnetik di bawah disusun berdasarkan panjang gelombang (diukur dalam satuan _m) mencakup kisaran energi yang sangat rendah, dengan panjang gelombang tinggi dan frekuensi rendah, seperti gelombang radio sampai ke energi yang sangat tinggi, dengan panjang gelombang rendah dan frekuensi tinggi seperti radiasi X-ray dan Gamma Ray.
Contoh spektrum elektromagnetik
Gelombang RadioGelombang radio dikelompokkan menurut panjang gelombang atau frekuensinya. Jika panjang gelombang tinggi, maka pasti frekuensinya rendah atau sebaliknya. Frekuensi gelombang radio mulai dari 30 kHz ke atas dan dikelompokkan berdasarkan lebar frekuensinya. Gelombang radio dihasilkan oleh muatan-muatan listrik yang dipercepat melalui kawat-kawat penghantar. Muatan-muatan ini dibangkitkan oleh rangkaian elektronika yang disebut osilator. Gelombang radio ini dipancarkan dari antena dan diterima oleh antena pula. Kamu tidak dapat mendengar radio secara langsung, tetapi penerima radio akan mengubah terlebih dahulu energi gelombang menjadi energi bunyi. Gelombang mikroGelombang mikro (mikrowaves) adalah gelombang radio dengan frekuensi paling tinggi yaitu diatas 3 GHz. Jika gelombang mikro diserap oleh sebuah benda, maka akan muncul efek pemanasan pada benda itu. Jika makanan menyerap radiasi gelombang mikro, maka makanan menjadi panas dalam selang waktu yang sangat singkat. Proses inilah yang dimanfaatkan dalam microwave oven untuk memasak makanan dengan cepat dan ekonomis.Gelombang mikro juga dimanfaatkan pada pesawat RADAR (Radio Detection and Ranging) RADAR berarti mencari dan menentukan jejak sebuah benda dengan menggunakan gelombang mikro. Pesawat radar memanfaatkan sifat pemantulan gelombang mikro. Karena cepat rambat glombang elektromagnetik c = 3 X 108 m/s, maka dengan mengamati selang waktu antara pemancaran dengan penerimaan. Sinar InframerahSinar inframerah meliputi daerah frekuensi 1011Hz sampai 1014 Hz atau daerah panjang gelombang 10-4 cm sampai 10-1 cm. jika kamu memeriksa spektrum yang dihasilkan oleh sebuah lampu pijar dengan detektor yang dihubungkan pada miliampermeter, maka jarum ampermeter sedikit diatas ujung spektrum merah. Sinar yang tidak dilihat tetapi dapat dideteksi di atas spektrum merah itu disebut radiasi inframerah.Sinar infamerah dihasilkan oleh elektron dalam molekul-molekul yang bergetar karena benda diipanaskan. Jadi setiap benda panas pasti memancarkan sinar inframerah. Jumlah sinar inframerah yang dipancarkan bergantung pada suhu dan warna benda.
Cahaya tampakCahaya tampak sebagai radiasi elektromagnetik yang paling dikenal oleh kita dapat didefinisikan sebagai bagian dari spektrum gelombang elektromagnetik yang dapat dideteksi oleh mata manusia. Panjang gelombang tampak nervariasi tergantung warnanya mulai dari panjang gelombang kira-kira 4 x 10-7 m untuk cahaya violet (ungu) sampai 7x 10-7 m untuk cahaya merah. Kegunaan cahaya salah satunya adlah penggunaan laser dalam serat optik pada bidang telekomunikasi dan kedokteran.
Sinar ultraviolet Sinar ultraviolet mempunyai frekuensi dalam daerah 1015 Hz sampai 1016 Hz atau dalam daerah panjang gelombagn 10-8 m 10-7 m. gelombang ini dihasilkan oleh atom dan molekul dalam nyala listrik. Matahari adalah sumber utama yang memancarkan sinar ultraviolet dipermukaan bumi,lapisan ozon yang ada dalam lapisan atas atmosferlah yang berfungsi menyerap sinar ultraviolet dan meneruskan sinar ultraviolet yang tidak membahayakan kehidupan makluk hidup di bumi.
Sinar X Sinar X mempunyai frekuensi antara 10 Hz sampai 10 Hz . panjang gelombangnya sangat pendek yaitu 10 cm sampai 10 cm. meskipun seperti itu tapi sinar X mempunyai daya tembus kuat, dapat menembus buku tebal, kayu tebal beberapa sentimeter dan pelat aluminium setebal 1 cm. Sinar GammaSinar gamma mempunyai frekuensi antara 10 Hz sampai 10 Hz atau panjang gelombang antara 10 cm sampai 10 cm. Daya tembus paling besar, yang menyebabkan efek yang serius jika diserap oleh jaringan tubuh.
Contoh penerapan gelombang elektromagnetik dalam kehidupan sehari-hari :

Radio
Radio energi adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar. Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor lingkungan. Panjang gelombang radar berkisar antara 0.8 – 100 cm.
Microwave
Panjang gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas hujan.
Infrared
Kondisi-kondisi kesehatan dapat didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah, radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan menggunakan remote control.
d. Ultraviolet
Sinar UV diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit kulit.
e. Sinar X
Sinar X ini biasa digunakan dalam bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang terlalu lama.
III. KESIMPULANDari pembahasan di atas, dapat disimpulkan bahwa begitu besar peranan gelombang elektromagnetik yang bermanfaat dalam kehidupan kita sehari-hari, tanpa kita sadari keberadaannya.Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan : * Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz * Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1µeV/GHz * Panjang gelombang dikalikan dengan energy per foton adalah 1.24 µeVmSpektrum elektromagnetik dapat dibagi dalam beberapa daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan praktis yang secara historis berasal dari berbagai macam metode deteksi. Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (? = 0,5 mm). Istilah “spektrum optik” juga masih digunakan secara luas dalam merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian rentang panjang gelombang saja (320 – 700 nm)[1].Dan beberapa contoh spektrum elektromagnetik seperti :Radar(Radio Detection And Ranging),digunakan sebagai pemancar dan penerima gelombang.Infra MerahDihasilkan dari getaran atom dalam bahan dan dimanfaatkan untuk mempelajari struktur molekulSinar tampakmempunyai panjang gelombang 3990 Aº – 7800 Aº.Ultra ungudimanfaatkan untuk pengenalan unsur suatu bahan dengan teknik spektroskopi.

Cara Penggunaan

CARA PENGGUNAAN MULTIMETER

  1. Baca dengan teliti buku petunjuk penggunaan (manual instruction) Multimeter yang dikeluarkan oleh pabrik pembuatnya.
  2. Multimeter adalah alat ukur yang dapat digunakan untuk mengukur tegangan (Multimeter sebagai Volt-meter), mengukur Arus (Multimeter sebagai Ampere-meter), mengukur Resistans/Tahanan (Multimeter sebagai Ohm-meter).
  3. Sebelum dan sesudah Multimeter digunakan, posisi saklar jangkauan ukur harus selalu berada pada posisi ACV dengan batas ukur (range) 250ACV atau lebih.
  4. Kabel penyidik (probes) Multimeter selalu berwarna merah dan hitam. Masukkanlah kabel yang berwarna merah ke lubang penyidik yang bertanda (+) atau out, dan kabel yang berwarna hitam ke lubang penyidik yang bertanda (-) atau common.
  5. Pada saat akan melakukan pengukuran dengan Perhatikan apakah jarum penunjuk sudah berada pada posisi angka nol. Jika belum lakukanlah peneraan dengan cara memutar sekrup pengatur posisi jarum (preset) dengan obeng minus (-).
  6. Posisi saklar jangkauan ukur harus pada posisi yang sesuai dengan besaran yang akan diukur. Jika akan mengukur tegangan listrik bolak balik (ACV) letakkan saklar pada posisi batas ukur (range) yang lebih tinggi dari tegangan yang akan diukur. Jika mengukur tegangan bolak balik 220V/220 ACV, letakkan saklar pada posisi batas ukur (range) 250 ACV. Hal yang sama juga berlaku untuk pengukuran tegangan listrik searah (DCV), kuat arus (DCmA-DCmA), dan tahanan/resistan (resistance).
  7. Pada pengukuran DCV, kabel penyidik (probes) warna merah (+) diletakkan pada kutub positip, kabel penyidik (probes) warna hitam (-) diletakkan pada kutub negatip dari tegangan yang akan diukur.
  8. Jangan sekali-kali mengukur kuat arus listrik, kecuali kita sudah dapat memperkirakan besarnya kuat arus yang mengalir.
  9. Untuk mengukur tahanan/resistan (resistance) , letakkan saklar jangkauan ukur pada batas ukur (range) W atau kW (kilo Ohm), pertemukan ujung kedua kabel penyidik (probes), tera jarum penunjuk agar berada pada posisi angka nol dengan cara memutar-mutar tombol pengatur jarum pada posisi angka nol (zero adjustment).
  10. Berhati-hatilah jika akan mengukur tegangan listrik setinggi 220 ACV.

Macam-macam multimeter


Multimeter dibagi menjadi dua yaitu : 


Multimeter Analog atau yang biasa disebut multimeter jarum adalah alat pengukur besaran listrik yang menggunakan tampilan dengan jarum yang bergerak ke range-range yang kita ukur dengan probe . Multimeter ini tersedia dengan kemampuan untuk mengukur hambatan ohm, tegangan (Volt) dan arus (mA). Analog tidak digunakan untuk mengukur secara detail suatu besaran nilai komponen, tetapi kebanyakan hanya digunakan untuk baik atau jeleknya komponen pada waktu pengukuran atau juga digunakan untuk memeriksa suatu rangkaian apakah sudah tersambung dengan baik sesuai dengan rangkaian blok yang ada.



Multimeter digital hampir sama fungsinya dengan multimeter analog tetapi multimeter digital menggunakan tampilan angka digital. Multimeter digital pembacaan pengukuran besaran listrik yang lebih tepat jika dibanding dengan multimeter analog, sehingga multimeter digital dikhususkan untuk mengukur suatu besaran nilai tertentu dari sebuah komponen secara mendetail sesuai dengan besaran yang diinginkan.

Bagian Bagian Multimeter

  • Papan Skala : digunakan untuk membaca hasil pengukuran. Pada papan skala terdapat skala-skala; tahanan/resistan (resistance) dalam satuan Ohm (Ω), tegangan (ACV dan DCV), kuat arus (DCmA), dan skala-skala lainnya.

    • Saklar Jangkauan Ukur : digunakan untuk menentukan posisi kerja  multimeter , dan batas ukur (range). Jika digunakan untuk mengukur nilai satuan tahanan (dalam W), saklar ditempatkan pada posisi W, demikian juga jika digunakan untuk mengukur tegangan (ACV-DCV), dan kuat arus (mA-mA). Satu hal yang perlu diingat, dalam mengukur tegangan listrik, posisi saklar harus berada pada batas ukur yang lebih tinggi dari tegangan yang akan diukur. Misal, tegangan yang akan diukur 220 ACV, saklar harus berada pada posisi batas ukur 250 ACV. Demikian juga jika hendak mengukur DCV.

      • Sekrup Pengatur Posisi Jarum (preset) : digunakan untuk menera jarum penunjuk pada angka nol (sebelah kiri papan skala).

        • Tombol Pengatur Jarum Pada Posisi Nol (Zero Adjustment) : digunakan untuk menera jarum penunjuk pada angka nol sebelum  multimeter  digunakan untuk mengukur nilai tahanan/resistan. Dalam praktek, kedua ujung kabel penyidik (probes) dipertemukan, tombol diputar untuk memosisikan jarum pada angka nol.

          • Lubang Kabel Penyidik : tempat untuk menghubungkan kabel penyidik dengan Multimeter. Ditandai dengan tanda (+) atau out dan (-) atau common. Pada  multimeter  yang lebih lengkap terdapat juga lubang untuk mengukur hfe transistor (penguatan arus searah/DCmA oleh transistor berdasarkan fungsi dan jenisnya), dan lubang untuk mengukur kapasitas kapasitor.

          Selain dua multimeter yang telah disebutkan diatas, telah ada perkembangan pada produk multimeter ini yang disebut multimeter clamp . Berikut penjelasannya.

          Di bidang teknik listrik dan elektronik, multimeter clamp atau multimeter jepit adalah perangkat listrik memiliki dua rahang yang terbuka untuk memungkinkan menjepit di sekitar konduktor listrik. Hal ini memungkinkan sifat-sifat arus listrik dalam konduktor yang akan diukur, tanpa harus melakukan kontak fisik dengan konduktor listrik, atau untuk memutuskan untuk penyisipan melalui probe.

          Klem saat ini biasanya digunakan untuk membaca besarnya sebuah sinusoidal saat ini (selalu digunakan dalam arus bolak-balik sistem tenaga (AC) distribusi), tetapi dalam kaitannya dengan instrumentasi canggih lebih fase dan gelombang yang tersedia. Arus bolak-balik yang sangat tinggi (1000 A dan lebih) yang mudah dibaca dengan meteran yang sesuai; arus langsung , dan sangat rendah arus AC (milliamperes) lebih sulit untuk diukur.

          Pengertian multimeter


          Pengertian dan Fungsi Multimeter / Avometer

          Siapa yang tidak kenal MultimeterMultimeter adalah alat wajib bagi seorang yang ingin belajar Elektronika lebih mendalam. Banyak juga yang menyebut multimeter dengan AVOmeter atau VOAM. Kali ini Elektronika Industri akan share tentang pengertian dan fungsi dari multimeter tersebut. Sebelumnya Elektronika Industri sudah membahas alat ukur lainnya yaitu tentang osiloskop.

          Pengertian Multimeter

          Multimeter adalah sebuah alat ukur listrik yang mengukur tegangan (volmeter, baik untuk tegangan DC atau AC), Hambatan (Ohm meter) serta arus (ampere-meter).
          Melalui ketiga fungsi tersebut, multimeter sering dijadikan sebagai alat untuk mendeteksi kerusakan sebuah komponen elektronika maupun rangkaian elektronika.